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Logarithmic corrections in directed percolation
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We study directed percolation at the upper critical transverse dimensiond54, where critical fluctuations
induce logarithmic corrections to the leading~mean-field! behavior. Viewing directed percolation as a kinetic
process, we address the following properties of directed percolation clusters: the mass~the number of active
sites or particles!, the radius of gyration, and the survival probability. Using renormalized dynamical field
theory, we determine the leading and the next to leading logarithmic corrections for these quantities. In
addition, we calculate the logarithmic corrections to the equation of state that describes the stationary homo-
geneous particle density in the presence of a homogeneous particle source.
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I. INTRODUCTION

Directed percolation~DP! @1# is an anisotropic variant o
the usual isotropic percolation~IP! @2# in which an effect or
activity can percolate only along a given preferred~longitu-
dinal! direction. DP is perhaps the simplest model leading
self-affine fractals. It has many potential applications, inclu
ing fluid flow through porous media under gravity, hoppi
conductivity in a strong electric field@3#, crack propagation
@4#, and the propagation of surfaces at depinning transiti
in one dimension@5#. Moreover, it is related to self
organized critical models@6#.

Often the longitudinal direction is viewed as time and D
is interpreted as a spreading process. In this dynamic in
pretation DP has become famous as the generic univers
class for phase transitions between an active and an ab
ing inactive state@7,8#. The perhaps most intuitive spreadin
process belonging to the DP universality class is the
called simple epidemic process~SEP!. In epidemic pro-
cesses, individuals~also referred to as particles and for sim
plicity assumed to be located on the sites of ad-dimensional
lattice! are either susceptible, infected, or immune. At timt
an infected particle can randomly infect any of its suscept
neighbors with a certain activation rate. Att11 the newly
infected particles are capable of infecting their suscept
neighbors and so on. With a certain deactivation rate
infected particle may become immune. Depending on
difference t between the activation and the deactivati
rates, the process is endemic or epidemic. Fort,tc the pro-
cess dies out after a finite time. Fort.tc the process spread
over the entire lattice and approaches a homogenous st
state. The pointt5tc marks a non-equilibrium phase trans
tion. There are two basic variants of epidemic processes
the SEP there is a chance that an immune particle beco
susceptible again. The spatiotemporal patterns generate
the SEP are DP clusters@7–9#. If immune particles remain
immune at all times, one has the so-called general epide
process~GEP!. The clusters of immune particles generat
by the GEP are IP clusters.

Since DP represents the generic universality class
1063-651X/2004/69~1!/016125~10!/$22.50 69 0161
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phase transitions into absorbing inactive states, it freque
occurs that work on nonequilibrium phase transitions
dresses the question, whether a given system belongs to
DP universality class or not. Usually this is done via t
fluctuation induced anomalous critical exponents. Howev
directly at the upper critical dimension, i.e., ind54 trans-
versal dimensions for DP, the leading scaling behavior
purely of mean-field type and there are no anomalous crit
exponents. However, fluctuations lead logarithmic corr
tions to the mean-field behavior. Just as the anomalous c
cal exponents, the logarithmic corrections can be used
decide if a given system belongs to the DP universality cla
With the computer resources available today, numer
simulations on nonequilibrium systems explore more a
more often high spatial dimensions. Simulations with re
able statistics of such systems in four dimensions are wi
reach today. Hence, we feel that it becomes importan
know logarithmic corrections for the DP universality class

The leading logarithmic corrections are fairly easy to e
tract from the known renormalization group~RG! results on
DP. Astonishingly, this has not been done to date, at leas
our knowledge.~See, however,Note added in proof.! It has
to be expected, though, that knowing the leading logarithm
corrections is not sufficient to obtain a decent agreement
tween theory and simulations. This expectation is based
the experiences that has been made for another system
which logarithmic correction have been studied intensiv
by numerical and analytical means, viz., linear polyme
@10,11#. Numerical work on DP ind54 in progress seems t
corroborate our expectation@12#.

The aim of this paper is to derive analytically logarithm
correction for DP up to and including the next to leadi
order. We focus three dynamical observables that are w
suited for investigation by numerical simulations, name
the numberN(t) of infected particles at timet generated by
a seed at the spatiotemporal origin (x50,t50), their mean
distanceR(t) from the origin~radius of gyration!, as well as
the survival probabilityP(t) of the corresponding cluster
Furthermore, we determine logarithmic corrections for t
DP equation of state~EQS! that relates the homogeneou
particle densityM of the stationary state tot and an auxiliary
©2004 The American Physical Society25-1
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H.-K. JANSSEN AND O. STENULL PHYSICAL REVIEW E69, 016125 ~2004!
constant homogeneous particle sourceh. For dimensions be-
low four, this EQS is known to two-loop order@13#. Its loga-
rithmic correction has not been addressed hitherto.

Of course, logarithmic corrections to dynamic quantit
such asN(t) are not only relevant for DP, they are likewis
important for dynamic IP at the respective upper critic
dimension 6. For logarithmic corrections to dynamic IP w
refer to Ref.@14#. Also, logarithmic corrections influence th
static properties of IP clusters, for example, their vario
fractal dimensions and their transport properties. For lo
rithmic corrections in static IP, see Ref.@15#.

The outline of our paper is as follows. In Sec. II w
briefly review the SEP as a dynamic model for DP. W
sketch the renormalized field theory of the SEP and cite p
vious RG results. Furthermore, we explain by solving the
equation ind54 how logarithmic corrections arise in DP. I
Sec. III we derive the logarithmic corrections for the afor
mentioned dynamic observables. Sec. IV treats logarith
corrections of the mean-field equation of state. In Sec. V
give a few concluding remarks. Details of our diagramma
perturbation calculation are relegated to the Appendix.

II. A BRIEF REVIEW OF DIRECTED PERCOLATION AND
ITS DYNAMICAL FIELD THEORY

This section is intended to provide the reader with ba
ground on the dynamical field theory of DP and to estab
notation. Moreover, it demonstrates how logarithmic corr
tions emerge in the RG framework by solving the RG eq
tion directly in d54.

A. Modelling directed percolation

There are basically two complimentary approaches
model DP. The first approach is based on bond percola
and assigns a direction to the bonds. An example for
kind of model is the random resistor diode network, see, e
Refs. @16–18#. In the other approach one models DP as
kinetic growth process@19–21#, viz., the SEP that we elabo
rated on in the Introduction. Here, we will take the latt
route.

On mesoscopic scales it makes sense to describe the
in terms of the densityn(x,t) of infected particles at timet
and space coordinatex. It is well known that the Langevin
equation~in the Ito sense! governing the time evolution o
this density is given by@7#

l21] tn~x,t !5¹2n~x,t !2tn~x,t !2
g

2
n~x,t !21z~x,t !,

~1a!

z~x,t !z~x8,t8!5l21g8n~x,t !d~ t2t8!d~x2x8!. ~1b!

The parametert is essentially the rate difference mention
in the Introduction and hence specifies the deviation fr
criticality. l represents a kinetic coefficient.z(x,t) is a
Gaussian random field that subsumes reaction noise and
erwise neglected microscopic details.̄ stands for averag
ing over the distribution of the noise. The right-hand side
Eq. ~1b! goes to zero for vanishingn(x,t) to enable the
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existence of the absorbing state. Contributions to Eqs.~1!
that are of higher order in the field or the derivatives turn o
to be irrelevant in the sense of the RG. For example, a
fusional noise contribution can be neglected.

Langevin equations are fairly intuitive and thus provide
natural starting point in the mesoscopic description of s
chastic processes. Prevalent alternative forms of mesosc
description are Fokker-Planck equations as well as dyna
functionals@22–24#. Dynamic functionals, also known as re
sponse functionals, are best suited for the application of fi
theory and RG ideas. This is the form of description that
will use here. The dynamic functionalJ for DP has been
known for a long time@7,9#. After exploiting a rescaling
form invariance that allows to us equateg and g8, J can be
written as

J5E ddx dt l s̃S l21] t1~t2¹2!1
g

2
~s2 s̃! D s. ~2!

The order parameter fields(x,t) is proportional to the par-
ticle densityn(x,t). s̃(x,t) is the response field correspon
ing to s(x,t). Time reflection, also known as duality tran
formation,

s̃~x,t !↔2s~x,2t !, ~3!

is a symmetry transformation of the dynamic functional@7#.
This, however, is merely an asymptotic symmetry that ho
provided that irrelevant terms are absent. When applying
ideas to calculate leading scaling properties or logarithm
corrections, one has to make sure that this symmetry is
served. On the other hand, if one is interested in correcti
to scaling stemming from irrelevant contributions to t
functional ~2!, then one has to admit composite fields th
break the symmetry~3!.

B. Renormalization and scaling

The great virtue of response functionalJ is that it allows
for a systematic perturbation calculation in the coupling co
stantg that resembles many features of, and allows to gle
techniques from, the well-established diagrammatic per
bation treatments of equilibrium critical phenomena. T
most economic way to actually do these calculations is to
dimensional regularization in conjunction with minimal su
traction~minimal renormalization!. For background on thes
methods we refer to Refs.@25,26#. An appropriate renormal-
ization scheme is

s→ s̊5Z1/2s, s̃→ s̊̃5Z1/2s̃, ~4a!

l→l̊5Z21Zll, t→ t̊5Zl
21Ztt, ~4b!

g→g̊5Zl
21Z21/2Zu

1/2G«
21/2m«/2u1/2, ~4c!

where the symbol ° indicates unrenormalized quantities. T
factor m«/2, wherem is an arbitrary external inverse lengt
scale and«542d measures the deviation from the upp
critical dimension, makes the renormalized coupling const
u dimensionless. The quantityG«5G(11«/2)/(4p)d/2 natu-
5-2
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LOGARITHMIC CORRECTIONS IN DIRECTED PERCOLATION PHYSICAL REVIEW E69, 016125 ~2004!
rally appears in the computation of Feynman diagrams an
included here for later convenience. In minimal renormali
tion the critical point valuet5tc is formally set to zero by
the perturbation expansion. In general, however,tc is a
nonanalytical function of the coupling constant. Thus, an
plicit additive renormalizationt2tc→t is concealed in the
minimal renormalization procedure. The renormalization f
tors Z, Zl , Zt , andZu are known to two-loop order@7,9#.

The critical behavior of the Green’s functionsGn,ñ
5^@s#n@ s̃# ñ& (cum), where ^•••& (cum) denotes the cumulant
with respect to the statistical weight exp~2J!, is governed
by the Gell-Mann–Low renormalization group equati
~RGE!

FDm1
n1ñ

2
gGGn,ñ~$r ,t%;t,u;l,m!50 ~5!

with the RG differential operatorDm given by

Dm5m]m1lz]l1tk]t1b]u . ~6!

The Wilson functions featured in the RGE are known to tw
loop order@7,9#,

g52
u

4
1S 629 ln

4

3D 9u2

32
1O~u3!, ~7a!

z52
u

8
1 S 1722 ln

4

3D u2

256
1O~u3!, ~7b!

k5
3u

8
2 S 7110 ln

4

3D 7u2

256
1O~u3!, ~7c!

b52«u1
3u2

2
2S 1691106 ln

4

3D u3

128
1O~u4!. ~7d!

The RGE can be solved by the method of characterist
The idea behind this method is to consider all the sca
parameters as a function of a single flow parameterl. One
sets up characteristic equations that describe how the sc
parameters transform under a change ofl. The characteristic
for the momentum scalem is particularly simple and has th
solution m̄( l )5m l , i.e., a change ofl corresponds to a
change of the external momentum scale. With help of
solution to the remaining characteristics one obtains

Gn,ñ~$x,t%;t,u;l,m!5@~m l !dZ~ l !# (n1ñ)/2Gn,ñ„$ lmx,Zl~ l !

3~ lm!2lt%;Zt~ l !t/~m l !2,ū~ l !;1,1….

~8!

as a solution to the RGE. At this stage the scaling solut
~8! is still rather formal sinceZ( l ), Zl( l ), Zt( l ), and ū( l )
require specification. Below the upper critical dimensio
these quantities display power law behavior described by
well-known critical exponents of the DP universality clas
Directly in d54, they depend logarithmically onl and hence
their behavior is qualitatively different from the lower d
mensional case.
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C. General form of the logarithmic corrections

Now we will state and solve the characteristics direc
for d54. The Wilson functions cited in Eqs.~7! are central
ingredients of the characteristics. To make the notion m
economic, we will writef (u)5 f 01 f 1u1 f 2u21••• with f
standing ambiguously forg, z, k, and b. We expect the
meaning of the coefficientsf 0 , f 1, and so on to be evident

The characteristic for the dimensionless coupling cons
u is given by

l
dw

dl
5b~w!, ~9!

where we abbreviatedw5ū( l ). Solving this differential
equation for«50 yields

l 5 l ~w!5 l 0w2b3 /b2
2
expF2

1

b2w
1O~w!G , ~10!

wherel 0 is an integration constant. The remaining charac
istics are all of the same structure, namely,

l
d ln Q~w!

dl
5q~w!. ~11!

Here,Q is a placeholder forZ, Zt , andZl , respectively.q
is a wildcard forg, k, andz, respectively. Exploitingld/dl
5bd/dw we obtain the solution

Q~w!5Q0wq1 /b2expF ~q2b22q1b3!

b2
2

w1O~w2!G ,

~12!

whereQ0 symbolizes a nonuniversal integration constant
The flow parameter introduced via the characteristics

arbitrary. This arbitrariness has an important virtue, vizl
can be chosen so that one of the relevant variablesx, t, or
t21 effectively acquires a finite value in the scaling limit. I
this paper we are interested in time-dependent quantities
hence we choose

Zl~w!~ lm!2lt5X0 , ~13!

whereX0 is a constant of order unity. With this choicew and
l tend to zero forlm2t→`. Instead of using the originalt,
we find it convenient to use

s5
b2

2
ln~ t/t0!5

3

4
ln~ t/t0!, ~14!

as our time variable. Here,t0 is a nonuniversal time constan
proportional toX0. From Eqs.~10! and ~12!, specialized to
Zl , we obtain

s5w212a0ln w1O~w!. ~15!

The constanta0 is given by

a05
b2z122b3

2b2
5

157

192
1

53

96
ln

4

3
50.976 533. ~16!
5-3
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Finally, we find by using Eq.~15!

w5s21expFa0

ln s

s
1OS ln2s

s2
,
ln s

s2
,
1

s2D G ~17!

for the dimensionless coupling constant as a function
time.

III. LOGARITHMIC CORRECTIONS FOR THE NUMBER
OF ACTIVE PARTICLES, ETC.

A. Number of active particles

At criticality ~t50!, the number of active particles gene
ated by a seed at the origin is related to the Green’s func
G1,1 via

N~ t !5E ddx G1,1~x,t;0,u;l,m!. ~18!

Using the general scaling result~8! we can express the sca
ing behavior ofN(t) as

N~ t !5Z~w!E ddx ~m l !dG1,1„lmr ,Zl~w!~ lm!2lt;0,w;1,1…

5Z~w!G1,1~q50,X0 ;0,w;1,1! ~19!

with Z(w) given by Eq.~12! specialized toQ5Z.
Note that the Green’s function in the last line of Eq.~19!

depends on the renormalized coupling constantw. If we were
interested only in the leading logarithmic correction toN(t)
we could ignore this subtlety. The higher logarithmic corre
tions, however, are influenced by the specifics of the Gre
function. For the second logarithmic correction, we have
calculateG1,1(x,t) to one-loop order. The diagrammatic el
ments required in this calculation are the Gaussian prop
tor

G~q,t !5u~ t !exp@2l~t1q2!t#, ~20!

whereu stands for the step function, and the two three-
verticeslg and 2lg. In contrast to the calculation of, fo
example, critical exponents, it is not sufficient for our curre
purposes to consider Feynman diagrams with amputated
ternal legs becauseG1,1 is determined by the Dyson equatio

G1,1~q,t !5G~q,t !1E
0

t

dt8E
0

t8
dt9 G~q,t2t8!

3S~q,t82t9!G~q,t9!1•••. ~21!

Here,S(q,t) stands for the self-energy that is given to on
loop order by

S~q,t !52
l2g2

2 E
p
G~p,t !G~qÀp,t !, ~22!

where*p stands for (2p)2d/2*ddp. Diagrammatic represen
tations of the self-energy and the Dyson equation can
found in Figs. 1 and 2, respectively.
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For details of our calculation we refer to the Append
Eventually we find

G1,1~q50,X0 ;0,w;1,1!511AN~X0!w1O~w2!, ~23!

whereAN(X0) is an amplitude given by

AN~X0!5 1
8 ~Z11!. ~24!

Here, we used the shorthand notationZ5 ln(2X0)1CE with
CE being Euler’s constant.

Now we know all the ingredients that contribute to th
leading and the next to leading logarithmic correction
N(t). Collecting from Eqs.~19!, ~12!, and~23! we find

N~ t !5N0~w211BN!1/6exp@2cNw1O~w2!#

5N08~s1BN!1/6F12
bNln s1cN

s
1OS ln2s

s2
,
ln s

s2
,

1

s2D G
~25!

whereN0 is a nonuniversal constant,N08 is a nonuniversal
constant slightly different fromN0, andBN56AN . The first
row of Eq. ~25! and the result~15! constitute a parametric
representation of the tuple (N,s) that is suitable for compari-
son to numerical simulations. The parametric representa
has the advantage that it represents a nicely systematic
pansion in terms of the coupling constantw. The second row
of Eq. ~25! shows the more traditional form. The constan
bN , cN , andBN are given by

bN5
a0

6
5

157

1152
1

53

576
ln

4

3
50.162 755, ~26a!

cN5b3

g1

b2
2

2
g2

b2
5

25

1152
1

161

576
ln

4

3
50.102 113,

~26b!

BN5 3
4 ~Z11!. ~26c!

Equations~14! and~25! show directly that we may eliminate
the arbitrary constantZ by a rescaling of the nonuniversa
time constantt0. However, we keep this constant in our fo

FIG. 1. Self-energyS(q,t) at one-loop order.

FIG. 2. Dyson equation~21! to one-loop order.
5-4
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mulas because it can mimic higher, neglected powers in
expansions, i.e., it represents a further constant that ca
fitted to simulation results.

B. Radius of gyration

The mean square distance of the active particles from
origin, also known as their radius of gyration, is defined

R~ t !25

E ddx x2 G1,1~x,t !

2dE ddx G1,1~x,t !

52
] ln G1,1~q,t !

]q2 U
q50

. ~27!

The general scaling solution~8! implies that

R~ t !252
] ln G1,1~~ lm!21q,Zl~w!~ lm!2lt;0,w;1,1!

]q2 U
q50

52~ lm!22
] ln G1,1~q,X0 ;0,w;1,1!

]q2 U
q50

~28!

for t50. Equation~28! shows that the radius of gyration is
like N(t), affected by the dependence ofG1,1 on the renor-
malized coupling constantw. Here, however, we need th
part of G1,1 that is quadratic in the momentum. In the A
pendix we calculate that

2
]

]q2
ln G1,1~q,X0 ;0,w;1,1!uq50

5X0~11AR~X0!w1O~w2!!. ~29!

The amplitude that appears here is given by

AR~X0!5 1
16 ~Z21!, ~30!

Combining Eqs.~28!, ~29! and ~30! as well as the solutions
to the appropriate characteristics we obtain

t21R25R0
2~w211BR!1/12exp@2cRw1O~w2!#

5R08
2~s1BR!1/12F12

bRln s1cR

s

1OS ln2s

s2
,
ln s

s2
,

1

s2D G , ~31!

with R0
2 andR08

2 being nonuniversal amplitudes.bR , cR , and
BR512AR are constants that have the following values:

bR5
a0

12
5

157

2304
1

53

1152
ln

4

3
50.081 377 7, ~32a!

cR5
z1b3

b2
2

2
z2

b2
5

67

2304
1

59

1152
ln

4

3
50.043 813 6, ~32b!

BR5 3
4 ~Z21!. ~32c!
01612
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C. Survival probability

Recently it was demonstrated that the survival probabi
P(t) of an active cluster emanating from a seed at the ori
can be expressed in terms of the order parameter and
response field as@27#

P~ t !52 lim
k→`

^e2kNs̃~2t !&, ~33!

whereN5*ddx s(x,0). This formula is fundamental in tha
it relates the survival probability unambiguously to the fiel
inherent in the dynamic functionalJ. In actual calculations,
however, the term exp(2kN) has to be incorporated into th
dynamic functional and one is led to

Jk5J1E dt k~ t !N~ t ! ~34!

instead of the originalJ. Here,k(t)5kd(t) is a source con-
jugate to the fields. Having introducedJk , one can write

P~ t !52 lim
k→`

^s̃~2t !&k52G0,1~2t,t,k5`,u;l,m!,

~35!

where ^•••&k denotes averaging with respect toJk . Note
that the explicit term exp(2kN) is gone.

At this point we find it worthwhile to annotate an inte
esting implication of the time reflection symmetry~3!. Due
to this symmetry the survival probabilityP(t) is identical to
the mean particle densityr(t)5^s(t)& of the dual process
starting with a fully occupied initial stater(0)5`.

To avoid tadpoles in our perturbation calculation, w
carry out the shifts̃→ s̃1M̃ so that^s̃&50 is restored.G0,1

is then nothing butM̃ . The entire procedure leads to the ne
response functional

Jk5E ddx dtH l s̃S l21
]

]t
1~t2gM̃2¹2!1

g

2
~s2 s̃! D s

1
lg

2
M̃s21S 2] tM̃1ltM̃2

lg

2
M̃21kD sJ . ~36!

The diagrammatic elements implicit inJk comprise the
two vertices encountered in Sec. III A. In addition, there is
third vertex, viz.,2l2gM̃(t) as depicted in Fig. 3~a!. The

FIG. 3. ~a! The new vertex2l2gM̃(t) and ~b! the one-loop

tadpole diagramT̃(t).
5-5
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Gaussian propagator for the new functional has to be de
mined from the differential equation

@l21] t1t2gM̃~ t !1q2#Ḡ~q,t,t8!5l21d~ t2t8!.
~37!

To avoid tadpoles,M̃ (t) must satisfy the differential equa
tion

] tM̃ ~ t !2ltM̃ ~ t !1
lg

2
M̃ ~ t !22k~ t !1T̃~ t !50. ~38!

At one-loop order, the tadpoleT̃(t) is given by the diagram
shown in Fig. 3~b!.

Upon solving the differential equations~37! and ~38! at
the mean-field level we find that the modified Gauss
propagator reads~for details see the Appendix!

Ḡ0~q,t,t8!5u~ t2t8!S K0~2t !

K0~2t8!
D 2

exp@l~t2q2!~ t2t8!#,

~39!

where

K0~ t !5
g

2t
~eltt21!. ~40!

Having the modified Gaussian propagator at our disposa
are in the position to calculate the diagram depicted in F
3~b!. This calculation leads eventually to

G0,1~2X0,0,k5`,w;1,1!} w21/2@11AP~X0!w1O~w2!#.
~41!

with the amplitudeAP(X0) reading

AP~X0!5
3

8 S Z2
3

2D . ~42!

For details on this calculation we refer to the Appendix.
Little further work is required to extract the logarithm

corrections to the survival probability. Recalling the scali
form ~8! and our choice for the flow parameter we dedu
that for t50

P~ t !52Z~w!1/2~m l !2G0,1~ÀX0,0,̀ ,w;1,1!. ~43!

Inserting our results for the characteristics as well as Eq.~41!
combined with Eq.~42! we obtain

tP~ t !5P0~w211BP!1/2exp@2cPw1O~w2!#

5P08~s1BP!1/2F12
bPln s1cP

s
1OS ln2s

s2
,
ln s

s2
,

1

s2D G .

~44!

P0 and P08 are nonuniversal factors. The constantsbP , cP ,
andBP52AP are given by
01612
r-

n

e
.

e

bP5
a0

2
5

157

384
1

53

192
ln

4

3
50.488 266, ~45a!

cP5
2z22g2

2b2
1b3

g122z1

2b2
2

52
7

384
1

17

192
ln

4

3
50.007 242 68, ~45b!

BP5
3

4 S Z2
3

2D . ~45c!

The constantZ might be eliminated by the same rescaling
the nonuniversal time scalet0 as discussed above.

IV. LOGARITHMIC CORRECTIONS TO THE EQUATION
OF STATE

A. General considerations

It is well known ~see, e.g., Ref.@26#! that the generating
functionalW@ J̃,J# of the Green’s functions

Gn,ñ~$x,t%,$x̃, t̃ %!5
dn1ñW@ J̃,J#

$dJ~x,t !%n$d J̃~ x̃, t̃ !% ñU
J5 J̃50

~46!

is related to the dynamic free energy functionalG@ s̃,s# by
the Legendre transformation

G1W5E ddx dt @s~x,t !J~x,t !1 s̃~x,t !J̃~x,t !#, ~47!

with dW/dJ5s, dW/d J̃5 s̃, dG/ds5J, and dG/d s̃5 J̃. G
is of great importance in diagrammatic perturbation the
because it is the generating functional of the irreducible v
tex functions. The dependence ofG upon the coupling con-
stantg can be written in the form

G@ s̃,s;g#5g22F@gs̃,gs;u#. ~48!

The expansion of the functionalF@w̃,w;u# into a series of
u5G«m2«g2 yields the loop expansion. The zeroth-ord
termg22F@gs̃,gs;0# is nothing else then the response fun
tional J ~2! itself. Hence,J constitutes the mean-field pa
of the dynamic free energy. From the RGE~5! for the
Green’s functions it follows that the RGE for the renorma
ized dynamic free energy is given by

FDm2
g

2E ddx dt S s~x,t !
d

ds~x,t !
1 s̃~x,t !

d

d s̃~x,t !
D G

3G@ s̃,s;t,u;l,m#50. ~49!

Exploiting the findings of Sec. II C, the solution the RG
~49! is found to be

G@ s̃,s;t,u;l,m#5G@Z~w!21/2s̃,Z~w!21/2s;Zt~w!

3t,w;Zl~w!l,lm#. ~50!
5-6
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Now we revisit the Langevin equation~1a!. If the simple
epidemic process is supplemented by an additional cons
particle sourceh, Eq. ~1a! is modified to

l21] tn~x,t !5¹2n~x,t !2tn~x,t !2
g

2
n~x,t !21h1z~x,t !.

~51!

The extra term in the Langevin equation induces an e
term in the response functional~2!,

J→Jh5J2E ddxdt lhs̃~x,t !. ~52!

Hence, the sourceJ̃ is shifted bylh, and, to obtain the true
generating functional of the irreducible vertex functions,
have to translate the fields by its mean valueM. Then it is
not difficult to see@13# that

lh5
dG

d s̃~x,t !
U

s̃50,s5M

5G1,0~M ,t!5..g21F1,0~gM,t,u!

~53!

constitutes the EQS that relates the particle source to a
stant mean particle densityM for a givent. By simple di-
mensional considerations we find thatF1,0 obeys the scaling
relation

F1,0~gM,t,u;l,m!5lm4F1,0~gM/m2,t/m2,u;1,1!

5..lm4F~gM/m2,t/m2,u!. ~54!

A one-loop calculation@13# yields

F~x,y,u!/x5~y1x/2!1u
~x1y!

2
@ ln~x1y!21#1O~u2!.

~55!

Exploiting now Eqs.~50! and ~54! we get the result

h5AG« /w~ lm!21d/2Zl~w!Z~w!21/2F

3~Aw/G«Z~w!21/2M /~ lm!d/2,Zt~w!t/~ lm!2,w!, ~56!

for the general scaling form of the EQS. Here,l 5 l (w) is
given by Eqs.~9! and ~10!.

B. Behavior at the upper critical dimension dÄ4

In four dimensions we haveG«5051/(4p)2. Following
our work for d,4 in Ref. @13# we will cast the EQS in a
parametric form. To this end we make the ansatz

t/m25R ~12u!, 4pM /m25 f M~w!Ru ~57!

so thatR50 corresponds to the critical point. The parame
u describes the crossover from the absorbing to the ac
phase. The source is zero foru50 andu5u0.1. We expect
that u052. After inserting the ansatz~57! into the scaling
form of the Eqs.~56! we choose the parameterw so that

l 22Zt~w!R5c, ~58!
01612
nt

a

n-

r
e

wherec is a convenient dimensionless positive constant. D
fining

p~w!5Zt~w!21Z~w!21/2w1/2f M~w! ~59!

we arrive at

4ph/m25R2Zl~w!Zt~w!2@wZ~w!#21/2c22

3F„cp~w!u,c~12u!,w…. ~60!

Next we determine the function p(w) so that
F(cp(w)u,c(12u),w) is analytic inu and has an expansio
in w. Using the one-loop result~55! we obtain readilyu0
521O(w2) and

p~w!511w~12 ln c!/41O~w2!. ~61!

It follows that

2c22F„cp~w!u,c~12u!,w…5u~22u!1O~w2!. ~62!

Using Eqs.~10!, ~12!, and~58! in conjunction with a res-
caling of the arbitrary dimensionless variableR, we get

rª2 3
4 ln R5w212a1ln w1O~w!. ~63!

The constanta1 is given by

a152
b2k112b3

2b2
5

133

192
1

53

96
ln

4

3
50.851 533. ~64!

Exploiting Eq.~15! we obtain for the dimensionless couplin
constant as a function ofr the asymptotic expression

w5r 21expFa1

ln r

r
1OS ln2r

r 2
,
ln r

r 2
,
1

r 2D G . ~65!

Collecting our results we get finally the equation of state
parametric form:

t/t05R~12u!, ~66a!

M /M05Ru~w211Y!1/3exp@2cMw1O~w2!#

5Ru~r 1Y!1/3F12
bM ln r 1cM

r
1OS ln2r

r 2
,
ln r

r 2
,
1

r 2D G ,

~66b!

h/h05R2u~22u!exp@2w/61O~w2!#

5R2u~22u!F12
1

6r
1OS ln r

r 2 D G . ~66c!

The constantsbM , cM , andch are given by

bM5
a1

3
5

133

576
1

53

288
ln

4

3
50.283 844, ~67a!

cM5
k2

b2
2b3

k1

b2
2

5
71

768
2

17

384
ln

4

3
50.079 712. ~67b!
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Equations~65! and ~66b! show directly that the arbitrary
constantY can be eliminated by a rescaling of the nonu
versal constantst0 , M0, andh0. However, we keepY in our
formulas for the same reasons for which we kept the non
versal constantZ in Sec. III .

To the order we are working here it is possible to elim
nate the parameterR completely. Exploiting Eqs.~63!, ~66a!,
and ~66c! we can expressR in terms oft andh as

R5@11O~w!#A~t/t0!21h/h0. ~68!

Using Eq.~68! we can recast our results stated in Eqs.~65!
and ~66! as

A~t/t0!21h/h05w4a1/3expF2
4

3w
1O~w!G , ~69!

and

t/t0

M /M0
5

12u

u
~w211Y!21/3@11cMw1O~w2!#,

~70a!

h/h0

~M /M0!2
5

22u

u
~w211Y!22/3@11~cM21/6!w1O~w2!#.

~70b!

Finally, we recast our results in yet another form. As
will see shortly, this form highlights an interesting and pro
ably important intricacy. If we take only the leading~1 loop!
terms in Eqs.~69! and ~70! into account, our results boi
down to the EQS

M

M08
5FAS t

t0
D 2

1
h

h0
2

t

t0
GU lnAS t

t0
D 2

1
h

h0
U1/3

, ~71!

which is appealingly simple in stature.M085(3/4)1/3M0 is
another nonuniversal constant. Now we switch to the sca
variables

X5
t/t0

Ah/h0

, Y5
M /M08

Ah/h0u ln~h/h0!u1/3
. ~72!

By incorporating the corrections coming from the two-lo
order we obtain

Y5~A11X22X!F11
ln~11X2!

ln~h/h0! G1/3H 12
1

12r F4a1ln r

112cM212
X

A11X2G1OS ln2r

r 2 D J . ~73!

In this formula the variabler is given by

r 5
3

8
u ln~h/h0!uF11

ln~11X2!

ln~h/h0! G . ~74!

Note that this asymptotic EQS~73! is not only a relation
between the scaling variables~72! but it also includes a di-
01612
-

i-

-

d

mensionful nonuniversal constanth0. Only in the limit
u ln(h/h0)u→` we obtain the mean-field equation of state
though with the logarithmically corrected scaling variabl
~72!. This intricacy may indeed be relevant for the explan
tion of simulation results@12#.

V. CONCLUDING REMARKS

In summary, we have investigated logarithmic correctio
to scaling in DP by using renormalized dynamical fie
theory. We calculated the leading and the next to lead
logarithmic correction for the numberN(t) of active sites at
time t generated by a seed at the origin, the radius of gyra
R(t) of the corresponding cluster, as well as its surviv
probability P(t). Moreover we determined the logarithm
corrections to the mean-field equation of state that descr
the dependence of the stationary particle densityM (t,h)
upont and an auxiliary external homogeneous sourceh.

Our result involve two nonuniversal scales. The dynam
observables depend on the nonuniversal time scalet0 and our
asymptotic expansions are valid for timest@t0. Note thatt0
may serve as a measure of quality for microscopic model
DP with respect to their suitability for numerical simulation
The smallert0 is for a given model, the less computer tim
will be required in order to get good statistics on the critic
behavior of DP. Our results for the EQS define the nonu
versal scaleh0 associated with the auxiliary source. The EQ
depends onh0 unless the limitu ln(h/h0)u→` is reached. Only
in this limit one can expect logarithmically corrected mea
field behavior of the EQS. This should and probably has
be taken into account when numerical data on the EQS
analyzed. The existence of the nonuniversal scalest0 andh0
can be regarded as two examples for Coleman’s concep
dimensional transmutation in naively scale-independent fi
theories. In other words,t0 and h0 are akin to the hadroni-
zation scale of quantum chromodynamics.

From the experience one has with other systems at t
respective upper critical dimension, in particular, linear po
mers ind54, we expect that logarithmic corrections are
clear significance with respect to numerical simulations
DP in d54. This expectation is corroborated by recent sim
lations@12#. The aforementioned experience and the fact t
we went up to the second logarithmic correction make
confident that our results will compare well with simulation
perhaps even quantitatively. We hope that our analytical
timates trigger an increase effort to determine logarithm
correction for DP numerically with high accuracy.

Note added in proof.In the meantime we have learne
that F. van Wijland, K. Oerding, and J. Z. Hilhorst hav
calculated the leading logarithmic correction for the me
density of the active particles starting from a homogene
initial distribution @28#.
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APPENDIX: CALCULATION OF GREEN’S FUNCTIONS

In this appendix we outline our one-loop calculations
scaling functions belonging to the Green’s functionsG1,1 and
G0,1. These calculations provide us with the amplitud
AN(X0), AR(X0), andAP(X0) that enter the second logarith
mic corrections for the dynamic observables.

1. The Green’s functionG1,1

Here we provide some of the details of the calculation t
leads from the Dyson equation~21! to our result forG1,1
stated in Eq.~23!. First, we carry out the momentum integr
tion in the self-energy~22!. This step leads to

S~q,t !52
~lg!2exp@2l~2t1q2/2!#

2~8plt !d/2
. ~A1!

Next, we substitute Eq.~A1! into Eq. ~21!. After an integra-
tion we obtain

G1,1~q,t !5G~q,t !F12
u~2lm2t !«/2

8G~11«/2!

3E
0

1

dx ~12x!x2d/2exp~2ax!G . ~A2!

Here, we introduced the shorthand notation

a5S t2
q2

2 Dlt. ~A3!

The remaining integral is calculated in dimensional regu
ization. A subsequent« expansion yields

E
0

1

dx ~12x!x2d/2exp~2ax!5~11a!F2
2

«
211I exp~a!G

112exp~2a!1O~«!,

~A4!

where the entire exponential integral is given by

I exp~x!5E
0

x

dy
12exp~2y!

y
52 (

k51

`
~2x!k

k!k
. ~A5!

The next step is to remove the« poles by employing the
renormalization scheme~4!. We letG1,1→G̊1,1, l→l̊, t→t̊,
and use the one-loop results

Z511
u

4«
1•••, Zl511

u

8«
1•••, ~A6a!

Zt511
u

2«
1•••, Zu511

2u

«
1•••. ~A6b!
01612
f

s

t

r-

Expressing the bare quantities in terms of these renorma
tion factors and their renormalized counterparts,

G̊1,15ZG1,15S 11
u

4« DG1,1, ~A7a!

l̊5Z21Zll5S 12
u

8« Dl, ~A7b!

l̊ t̊5Z21Ztlt5S 11
u

4« Dlt, ~A7c!

and using the intermediate results in Eq.~A2! combined with
Eq. ~A4! we obtain the renormalized Green’s function

G1,1~q,t !5G~q,t !S 11
u

8
$~11a!@ ln~2lm2t !

1CE2I exp~a!#1a1exp~2a!% D . ~A8!

Note that the« poles are indeed removed by our renorm
ization.

Two results important for the logarithmic correction ca
be extracted from~A8!. Upon settinga50 we find

G1,1~q50,lm2t5X0 ;t50,w;1,1!511 1
8 ~Z11!w,

~A9!

and hence the amplitudeAN(X0) as stated in Eq.~23!. More-
over, we get

2X0
21 ]

]q2
ln G1,1~q,lm2t5X0 ;t50,w;1,1!uq250

511 1
16 ~Z21!w, ~A10!

which leads to our result forAR(X0) given in Eq.~30!.

2. The Green’s functionG0,1

Here we provide selected details on our one-loop calcu
tion of G0,1 as required in Eq.~35!. We start by solving the
differential equations~37! and ~38!. The initial and terminal
conditions for the fields necessitate the ansatz

M̃ ~ t !52u~2t !K~2t !21. ~A11!

The type of the source term,k(t)5kd(t) with k→`, de-
mands the initial conditionK(0)50. With this information,
the differential equation~38! can be transformed withou
much effort into the integral equation

K~ t !1
g

2t
5elttS E

0

t

dt8 e2ltt8K~ t8!2T̃~2t8!1
g

2t D .

~A12!

At mean-field level, the solution to Eq.~A12! is given by Eq.
~40!. Inserting the correspondingM̃0(t)52K0(2t)21 into
5-9
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the differential equation~37! we find the modified Gaussia
propagator as stated in Eq.~39!.

Now to the computation of the diagram depicted in F
3~b!. After some intermediate steps we obtain

K~ t !2T~2t !5
l2g2

2
K0~ t !22E

0

t

dt8

3
K0~ t8!3exp@2lt~ t2t8!#

@8pl~ t2t8!#d/2
. ~A13!

The further evaluation of Eq.~A13! is fairly straightforward
for t50. After « expansion we find

K~ t !2T̃~2t !52
lg3~2lt !«/2

16~4p!d/2 S 2
6

«
1

3

2D . ~A14!

Insertion of this intermediate result into Eq.~A12! yields
ffe

01612
.
K~ t !5

glt

2 F11
u~2lm2t !«/2

4G~11«/2! S 2
3

«
1

9

4D G . ~A15!

Next, we renormalizeK(t). Indicating the consistency of ou
previous steps, the appropriate combination of renormal
tion factorsZu

1/2Z215113u/(4«)1¯ cancels the« pole in
~A15!. The renormalizedK(t) reads

K~ t !5
glt

2 F12
3u

8 S ln~lm2t !1CE2
3

2D G . ~A16!

Exploiting G0,1(2t)5K(t)21 and lm2t5X0 as well as re-
calling the definition ofZ we finally obtain

2pX0G0,1~2lm2t5X0 ;t50,w;1,1!

5w21/2F11
3

8 S Z2
3

2DwG . ~A17!
im-
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